A mouse model for hepatitis C virus infection: are we there yet?

Cordelia Manickam, R. Keith Reeves


Collectively, viral hepatitis remains a global epidemic causing an estimated 1.4 million deaths per year, of which hepatitis C virus (HCV) is the leading cause (1). Despite the availability of new antivirals that are capable of effective cure, the number of HCV infections and re-infections continue to rise worldwide. In addition to progressive liver disease and hepatocellular carcinoma (HCC), HCV is associated with metabolic disorders and co-morbidities including obesity, insulin resistance, type 2 diabetes mellitus, cardiovascular disease, mixed cryoglobulinemia among others (2-4)—all adding to the morbidity and mortality associated with this disease. HCV continues to be a challenge to control, due, at least in part, to the lack of a tangible animal model. Chimpanzees are susceptible to HCV and played a major role in understanding the natural history of the disease. But with limitations on the use of chimpanzees in biomedical research and an attenuated disease course, a tangible animal model could provide information on several gaps in HCV knowledge such as viral pathogenesis and persistence, immune correlates of protection, and importantly vaccine development and testing.